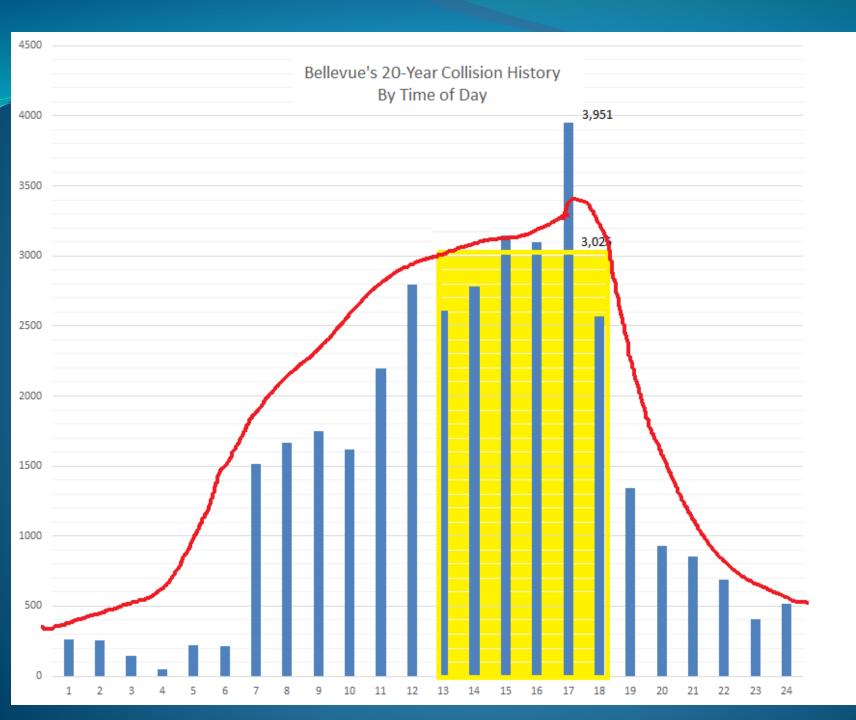
Bellevue's Success Story with SCATS

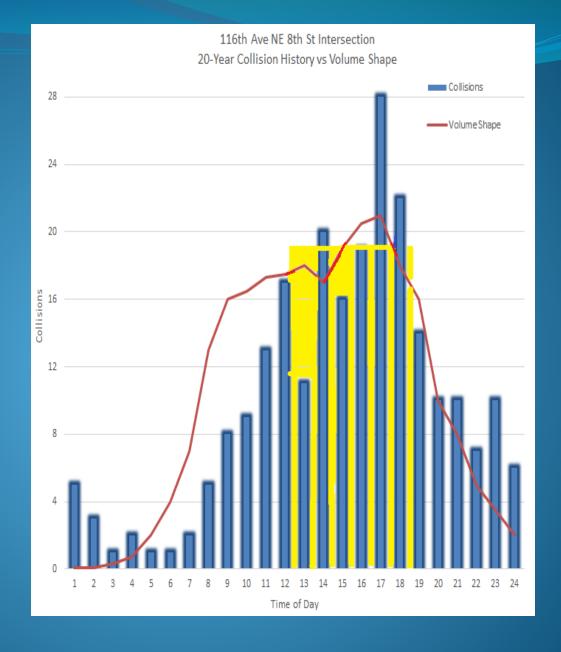
(Sydney Coordinated Adaptive Traffic System)

Raid Tirhi – Senior Intelligent Transportation Engineer April 21, 2018 Bellevue Neighborhood Conference



Intelligent Transportation Systems Primary Goal

Moving Traffic Efficiently & Safely



PM Peak Hour vs noon to 7pm

10 % traffic increase yet
50 % Spike in Collisions

Also see:

"Exploring the level of Service and Traffic Safety Relationship at Signalized Intersections" (By Ana M. Almonte & Mohamad A. Abdel-Aty, ITE Journal/June 2010)

Collision Causes

94% Erroneous Human Behavior

Maintenance or Design Issues

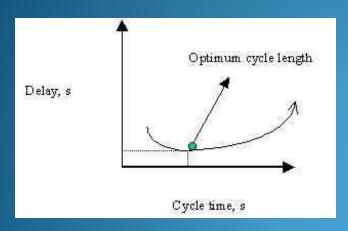
Objectives

Minimize delay

(for all modes of transportation)

Minimize the number of stops

(Rear-end and T-bone collisions)


Manage traffic queues

(Rear-end and Sideswipe collisions)

Maximize the green band width yet utilize the optimum cycle length

Traffic Signal Optimization

Optimum cycle →

More efficiency →

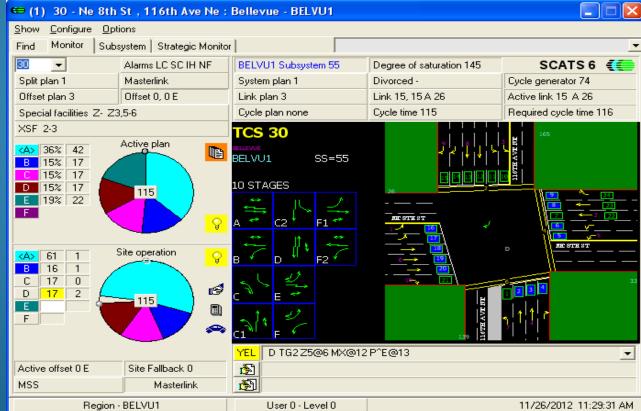
Less driver frustration →

Less Collisions

Signal coordination is a balanced mix of art and science

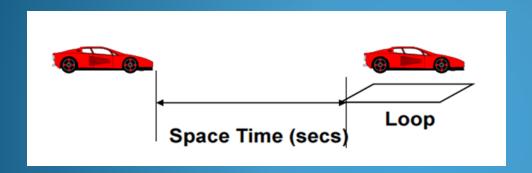
SCATS Main Screens

Site Operation


Site Fallback 120 Flexilink

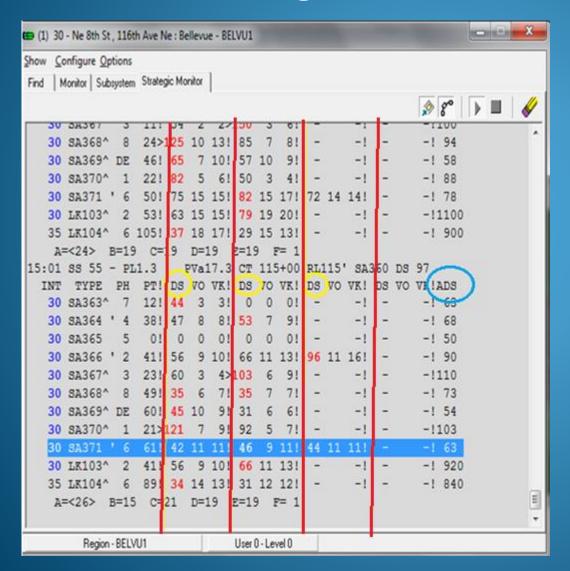
Site operation

Site Fallback 0


Hurry Call

100

Detection is the most critical part for SCATS to properly work


SCATS calculations are based on "Space Time" relationship between vehicles

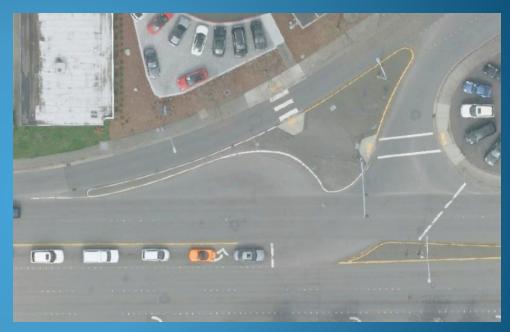
Degree of Saturation (DS)

DS is a measure of the effectiveness of the green time for a particular lane

Degree of Saturation

Bellevue programmed SCATS to look at Max detector DS in lane group

Green times are assigned based on Average DS in the last 3 cycles for all voting stages



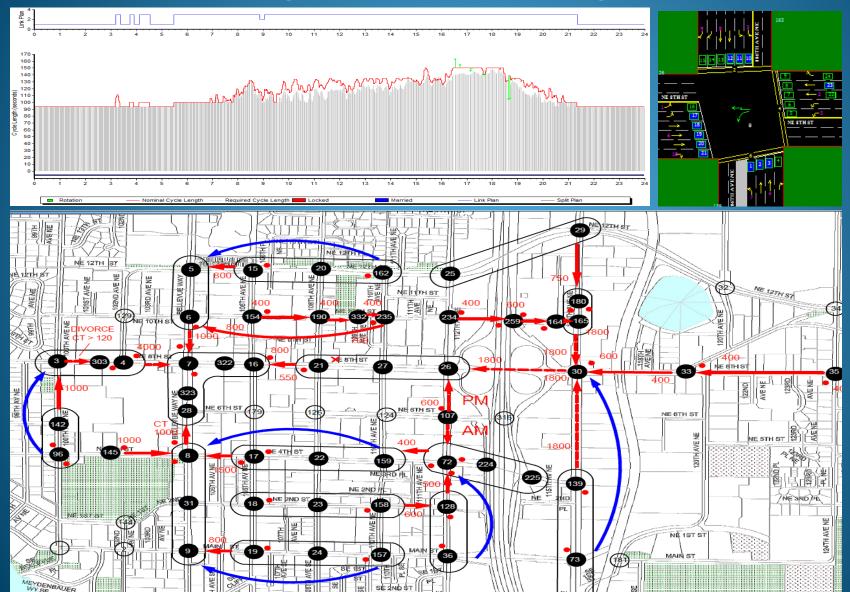
Stopping At Detection Zones

Are drivers stopping at the detection zone?

Which clues are they using?

How does that work with SCATS?

Detection & Construction


So, what would SCATS do if:

- 1. The NB LT lane is closed, phase is simply skipped.
- 2. If one of the 2 NB thru lanes is closed, the other lane will have more volume & votes for more time.

Signal Detection & Marriage Tree

Variable Conditions



Dynamic Traffic Volumes → Dynamic Optimum Cycle

→ Adaptive system

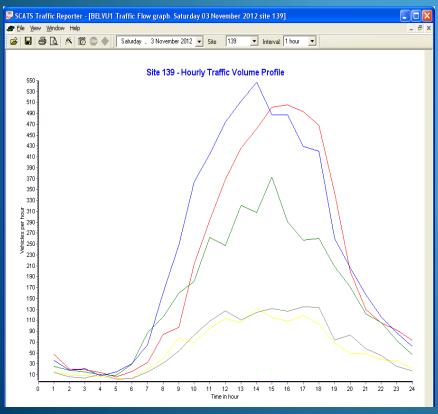
Adaptive Left Turn Flashing Yellow Arrow With Ped Minus Phasing

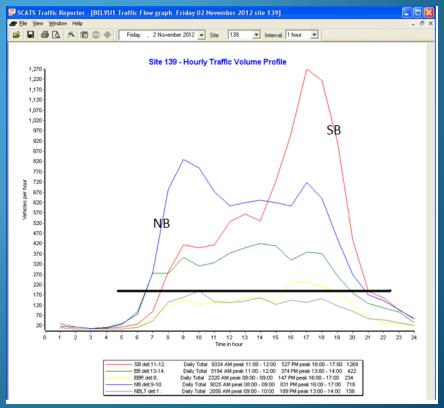
Special Events

When goals & objectives change → SCATS programming must change

Fourth of July celebration accommodates 65,000 people leaving downtown park within 30 minutes.

l=159!PM=,2#!	I=234!PM=.2#!
I=72!PM=.2#!	;Lock 10th Street into 180 or 90 second Cycle Length
l=224!PM=,2#!	l=154!CL=180#!
l=225!PM=,2#!	I=190!CL=180#!
;Lock 8th Street into 180 or 90 second Cycle Length	l=332!CL=90#!
l=26!CL=180#!	l=235!CL=180#!
l=27!CL=180#!	l=234!CL=180#!
l=21!CL=180#!	;Divorce locks to keep each street to the desired locked cycle length
l=16!CL=180#!	SS=63!DV#!
l=322!CL=90#!	SS=64!DV#!
I=7!CL=180#!	SS=56!DV#!
l=4!CL=180#!	;Change VR35 values to ensure Stage A gets majority of the cycle time
;Lock 4th Street into 180 second Cycle Length	I=3!VP3=5!VP10=10!VP11=10!VP12=10!VP13=40!
l=17!CL=180#!	l=16!VP10=40!VP11=6!VP12=15!VP13=15!
l=22!CL=180#!	I=21!VP10=40!VP11=6!VP12=15!VP13=15!
l=159!CL=180#!	I=27!VP10=40!VP11=6!VP12=15!VP13=15!
I=72!CL=180#!	I=26!VP10=49!VP11=10!VP12=15!VP13=10!
I=224!CL=180#!	I=17!VP10=35!VP11=8!VP12=15!VP13=15!
LOCKEL 400#I	1 20111040 20111044 0111042 40111042 401


Loop Data & Construction Schedules


Goal is:

Reduce traffic impacts as long as reasonable contractor schedule allows it.

Recommendations on:

- Best time of the day and day of the week to allow lane closures.
- · Construction mobilization direction.

Before & After SCATS Studies

148th St Travel Time studies 19 traffic signals, 4.5 miles

	Average	e Day	Peak Hours		
	Travel		Travel		
	Time	Stops	Time	Stops	
Avg. Both Directions (Before SCATS)	00:12:17	6.7	00:12:41	7.3	
Avg. Both Directions (After SCATS)	00:10:38	4.6	00:11:00	4.5	
% Improvement	13%	32%	13%	38%	

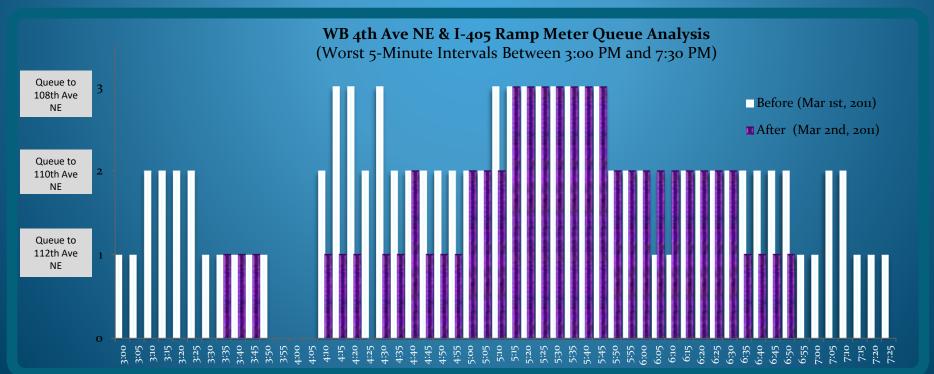
Corridor	Time	Travel Time Reduction
NE 8 th St – Bel Way to 112th	2pm to 6pm	43%
NE 4 th St – Bel Way to I- 405	2pm to 6pm	16%
Factoria Blvd – SE 32 nd to Newport Way	5pm to 6pm	36%
NE 8 th St - 116 th to 124 th	Noon to 6pm	35%

NB 148th, Travel Time	Study (Be	fore SCATS)				
Date	Run #	Newport		SE 38		SE 37	
		Veh. in Q	Clear	Stop	Clear	Stop	Clear
09/20/12	1	10	08:16:20	08:17:03	08:17:36	08:17:46	08:18:04
09/20/12	2	10	08:59:47		09:00:26	09:00:34	09:01:48
09/20/12	3	3	09:31:32		09:32:07		09:32:18
09/20/12	4	1	11:19:06		11:19:43	11:19:55	11:20:29
09/20/12	5	5	11:49:40		11:50:15	11:50:26	11:50:50

Before & After SCATS Studies

Eastbound NE 4th Queue to NB I-405

EB 4th Queued Past 110th:


Start End

 Old System
 4:10pm
 7:00pm

 SCATS
 4:40pm
 6:30pm

Result = Total 1 hour less congestion

Fatal Pedestrian Collision Investigation

File Window	Help				
174 💌					
hases Cycles Tin	neline Statistic				
)ate	Start Time	End Time	Duration	Phase	
on 1-Dec-2014	05:43:15	05.43.28	13	D	
on 1-Dec-2014	05:43:28	05:43:54	26	A	
on 1-Dec-2014	05:43:54	05:44:07	13	D	
on 1-Dec-2014	05:44:07	05.45.02	55	A	
on 1-Dec-2014	05:45:02	05.45.13	11	C	
on 1-Dec-2014	05.45.13	05.45.52	39	A	
on 1-Dec-2014	05.45.52	05:46:02	10	C	
on 1-Dec-2014	05:46:02	05.46.54	52	C C	
ton 1-Dec-2014 ton 1-Dec-2014	05.47:05	05.47:31	26	A	
ton 1-Dec-2014	05:47:05	05:47:42	11	C	
ton 1-Dec-2014	05:47:42	05:47.54	12	D	
on 1-Dec-2014	05:47:54	05:49:27	93	A	
ton 1-Dec-2014	05.49.27	05:49:40	13	D	
on 1-Dec-2014	05.49.40	05:50:11	31	A	
Ion 1-Dec-2014	05:50:11	05:50:23	12	D	
on 1-Dec-2014	05.50.23	05:51:08	45	A	
on 1-Dec-2014	05:51:08	05:51:20	12	D	
fon 1-Dec-2014	05:51:20	05:51:38	18	А	
on 1-Dec-2014	05:51:38	05:52:01	23	D	
on 1-Dec-2014	05:52:01	05:52:22	21	A	
ton 1-Dec-2014	05:52:22	05:52:44	22	D	
on 1-Dec-2014	05:52:44	05:55:05	141	A	
on 1-Dec-2014	05:55:05	05:55:15	10	C	
on 1-Dec-2014	05:55:15	05:56:51	36	Č.	
ton 1-Dec-2014 ton 1-Dec-2014	05:56:01	05:57:45	104	A	-
ton 1-Dec-2014	05:57:45	05:57:57	12	D	
ton 1-Dec-2014	05:57:57	05.58:23	26	A 4	
on 1-Dec-2014	05:58:23	05.58.39	16	D	
on 1-Dec-2014	05 58 39	06:00:14	95	A	
ton 1-Dec-2014	06:00:14	08:00:25	11	D	20
Ion 1-Dec-2014	06:00:25	06:03:17	172	A	
ton 1-Dec-2014	06:03:17	08:03:29	12	D	
Ion 1-Dec-2014	06:03:29	06:04:29	60	A	
fon 1-Dec-2014	06:04:29	08:04:55	26	C	
fon 1-Dec-2014	06:04:55	06:05:07	12	D.	
ton 1-Dec-2014	06:05:07	06:05:41	34	A	
on 1-Dec-2014	06:05:41	06:05:53	12	C	
on 1-Dec-2014	06:05:53	06:06:05	12	D	
on 1-Dec-2014	06.06.05	06:07:06	61	A	
on 1-Dec-2014	06:07:06	06:07:16	10	C	
on 1-Dec-2014	06:07:16	06:07:52	36	A	
on 1-Dec-2014	06:07:52	06:08:04	12	D	
on 1-Dec-2014	06:08:04	06:08:57	53 12	D	
on 1-Dec-2014 on 1-Dec-2014	06:09:57	06:09:09	57	A	
on 1-Dec-2014	06:10:06	06:10:18	12	c	
on 1-Dec-2014	06:10:18	06:10:33	15	0	
on 1-Dec-2014	06:10:33	06:12:26	113	A	
on 1-Dec-2014	06:12:26	06:13:15	49	Ď	
on 1-Dec-2014	06:13:15	06:13:51	36	A	
fon 1-Dec-2014	06:13:51	06:14:03	12	8	
on 1-Dec-2014	06:14:03	06:14:14	11	C	

Lessons Learned

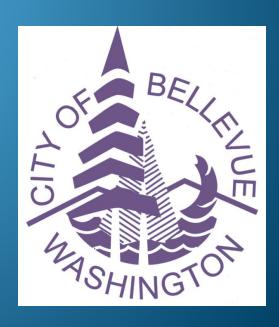
- Think outside the box
- For every action there is a reaction and unintended consequences
- Signal coordination is part art part science,
- Avoid violating driver expectancy,
- Moderation is best & overly conservative assumptions may lead to unsafe designs.

Future ITS Projects

- Street light management
- Bluetooth travel time info
- Real time traffic map upgrade
- Roadway weather & pavement temperature
- Variable message signs
- Camera system expansion & monitoring (Park and Rides, Ramp meters, etc)
- ITS system security
- Connected vehicle technology applications
- Camera full motion video on web/mobile
- ITS Master Plan update
- Variable channelization
- Parking management
- Flood monitoring
- Automated traffic counting
- ??? The NEXT BIG THING ???

Congrats Bellevue & Thanks to all for making this a Successful Project

ITE's 2016
Transportation Operations
Achievement Award
presented to the city of Bellevue



"Together, we are the best"

Questions?

PRESENTED BY RAID TIRHI, PE rtirhi@bellevuewa.gov (425) 452-6052

